
Processing In Memory

New Models for Future
Architectures

December 12, 2006

Arun Rodrigues
Org. 1423

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Dusty Decks, Memory Walls
& The Speed of Light

• SW resists change
– Limit new Architectures
– Legacy HW can’t

support new SW
models

– “Chicken & Egg”
• “Memory Wall” is known

problem
• Speed of Light –

fundamental problem

 Outline
• Conventional Memory
• Bottlenecks & Impacts
• Processing-in-Memory
– Chip Designs
– Fabrication
– System Design

• Programming

• Processors connected to the caches…
•Caches connected to the MC…
•MC’s connected to the DIMM Bus…

• Processor & Cache (usually) on same
chip
•MC sometimes on-chip
•MC converts from address to DRAM

commands, reorders requests to
maximize locality, arbitrate
channels/busses

Conventional Memory Hierarchy

Processor
Cache(s)

Mem. Controller

DIMM

B
us

DIMM

DIMM

DIMM

B
us

DIMM

DIMM

DIMM

DIMM

Bottlenecks & Complexity

•Chip/Board boundaries
•Bus/Bank/Row contention
•Coherency
•Complexity
– OOO Memory Queues
– MC command reordering
– Prefetching collisions
– Cache non-determinism

•Results in high latency
– O(100) ns Processor

Cache(s)

Mem. Controller

DIMM

B
us DIMM

DIMM

Latency Impact

• Loads often largest category
of instruction
• Tend to dominate latency
• Solutions:
– Caches
– Prefetch
– MC reordering
– OOE
– SW prefetch

•Result?

7%FP

9%Branch

27%Integer

14%Store

43%Load

Mix Latency

Sandia
Mix

Latency Impact

• Low IPC
– CTH: 0.37
– sPPM: 0.5
– LAMMPs: 0.5

• Strong correlation
between cache
misses & low IPC
• Even with aggressive

HW features, memory
dominates

IPC=0.5

PIM: The Solution

• If there is a bottleneck, go
around it!
• Combine processor and

memory
• Processors (logic) cheap,

latency is expensive
• “Single Part” computer
• Simplify
– No/Small caches
– In-order
– Massive Parallelism

Processor Memory

PIM

PIM PIM PIM

PIM PIM PIM

PIM PIM PIM

PIMs Conquer All

• Embedded Systems
– eDRAM IP blocks

• Game systems
– CELL, Wii, GameCube,

and Xbox 360, PS2
• Conventional Processors
– Caches often >80%

transistor count
• PIM Projects
– Execube, DIVA, PIMLite,

HTMT, IRAM

Core-Level View

• Processor + Memory
•Communication
– On-chip (PIM-PIM)
– Off-chip (PIM, CPU, More

Memory)
• Processor
– Multithreading?
– Wide ALU
– Sense Amp alignment

•Many fabrication
options…

DRAM

Sense Amp

Processor

Communication
PIM-PIM Off-chip

MT
RF

Wide ALU

Off-Chip Memory

Combined Fabrication

• Processor Fab Process + DRAM Fab process
– Logic-in-DRAM: Start with DRAM add metal layers

• Slower DRAM (~5ns), higher density (~1.7 Gb/mm^2)
– DRAM-in-Logic: Start with logic process, add eDRAM

• Fast DRAM (~3ns), but DRAM less dense (2.5:1)
•Complexity
– Add extra steps to fab process -> lower yields?
– DRAM knowledge & processor knowledge different
– Design process different

Stacked Fabrication

•DRAM & Logic components
fabbed separately
•Dies aligned, joined
• Potential “best of both worlds”
•Uncertainties
– Alignment process
– Heat dissipation
– Die-to-die latency?

Processor
DRAM

PIM

LLNL
DRAM
“Cube”

• PNM replaces AMB chip in
conventional FB-DIMM
•Multiple compute cores,

separate “OS/NIC” processor
– Low Latency / High Bandwidth
– Multithreading
– Hardware Synchronization

• Fabrication Simplicity
– DRAM in DRAM process
– Processors in ASIC process

•High efficiency
– More Flops/mm^2

Processor Near Memory (PNM)

DRAM DRAMAMB
FB-DIMM

DRAM DRAMPNM
PNM-DIMM

PNM Sizing

• Goal: Simplicity & Efficiency
• Standard IP Cores
– DMA, SerDes, Mem. Ctrl

• Network
– Router-based switching (Dally)

• Caches
– CACTI

• Processors
– Based on common embedded

cores (ARM, MIPS, etc…)
– Additional area for MT support:

4.3% * log_2(threads) + RF

2 @ 625
Mhz

2 @ 800
Mhz

3 @
1650
Mhz

Compute
Proc.

16 (42)22 (4.72)54 (7.52)Area
mm^2

2 / Core7 / Core8 / CoreThreads

51020Off-chip
Gbps

LittleMediumBig

PNM Performance

• Performance simulation
performed on Sandia &
SPEC apps
•Assume simple (single

issue) MT cores
• Low latency to memory

(~10 ns)
• Threads cover additional

pipeline & memory
latency
•Achieve High IPC (>0.75)

PNM Efficiency

•Comparison against
2Ghz Opteron
• Threads critical to

performance
– Saturated threads: 2.0-

2.5x more flops/mm^2
– 50% threads: 1.6-1.9x
– 1 thread: 1.0-1.4x

• Simple cores, close to
memory can beat much
more complex cores

PIM Systems

DRAM

PIM PIM PIM

PIM PIM PIM

PIM PIM PIM

Router

PIM PIM PIM

Router

PIM PIM PIM

CPU

PIM

Router PIM

PIMPIM

• “Sea of PIMs”
– Single Part, elegant
– Network uncertainty

• “Tree of PIMs”
– Hierarchical interconnection

• Heterogeneous
– Conventional CPU + PIMs in

MPP configuration
– Lower risk

• Pure PIM vs. DRAM-backed PIMs

PIM DRAM

DRAM

Sea
Of

PIMs

Tree
Of

PIMs

Heterogeneous

Pure PIM
DRAM-backed

Programming: MPI Again?

•Well accepted, understood
(we like to think), legacy
backing
• PIM offers advantages
– Wide word, low latency

improves message matching
– Low-level synchronization

allow message pipelining
•But…
– MPI overhead >> shmem
– Not good at fine-grain

parallelism
– May not be enough

Scatter Gather

• Integer, memory ops dominate
– FP ops (“Real work”) < 10% of Sandia codes
– Several Integer calculations, loads for each FP load
– Several FP loads per FP op.

• Cray-like Scatter/Gather operations
• Pack data into cache lines, use BW better
• Automatic pointer chasing
– Graph / list traversal

• Smart prefetching
– Data collection threads
– Introspection

• Theme: processing is now cheap, data movement is expensive

Offload/Accelerator

•Augment conventional processor with PIM
• “Hide” PIM programming complexity in library,

run-time
• Explicit offload of large “chunks” of computation
• “Master/Slave” model

Massive Multithreading

•Multiple levels of
parallelism
• Proximity to memory

allows fast
synchronization
•Highly applicable to

certain problems
(e.g. Graph)
• Superior scaling &

performance for low
cost

Multiple Thread Models
• Pursue Parallelism at

multiple levels
• Loop-level (OMP, auto)
– Traditionally limited by

expensive processors
– What if procs were

cheap?
• Threadlets
– Threads w/o stacks,

fewer registers
•Migrating threads
– Move the thread to the

data, not the data to the
thread

Slow PIMs

Fast PIMs

1 core

2 cores

4 cores

8 cores

Smaller

Faster

 Conclusions

•Cost of processing dropping, cost of data
movement still high
• Traditional memory hierarchy complex, filled with

bottlenecks – (complex workarounds not working)
• Simplify!
•Can get performance with simple hardware, but

need LOTS of parallelism
•Multiple programming models may provide

parallelism
•Hardware needs programming model support
• Programming models need hardware support

Questions?

What a DRAM DIMM Does

•Matrix of capacitors
•Commands
– RAS/CAS: Row/Col Select
– Select, Write, Auto-refresh

• Leakage -> Refresh
• Latencies
– tRAS: Activate-to-precharge
– tRCD: Row-to-column
– tCAS: Access a column
– tRP: Precharge time

•Row reuse key to performance

O(1024) bits

O(10) bits

Open Row

FBDIMM: The Future?

• Goal: increase speed,
reliability of DRAM
• Point-to-Point Ring (not bus)
• AMB ASIC controls DIMM
– Provide error correction

• Faster serial connections
– More channels
– Lower pin count

• But…
– More memory = more

latency
– Cost?

